Rumus Ke – n
Un = a + ( n – 1 ) b
Keterangan :
a = suku pertama
b = beda
Un = suku ke – n
n = bilangan bulat
Contoh
Di ketahui suatu barisan 5, -2, -9, -16,…., maka tentukanlah rumus suku ke – n nya?
Jawab :
Selisih 2 suku berurutan pada barisan 5, -2, -9, -16,… adalah tetap, yakni b = -7 sehingga barisan bilangan nya di sebut dengan barisan aritmatika.
Rumus suku ke – n barisan aritmatika tersebut ialah :
Un = a + ( n – 1 ) b
Un = 5 + ( n – 1 ) ( -7 )
Un = 5 – 7n + 7
Un = 12 – 7n
Petunjuk Kegiatan 1. Jawablah Pertanyan berikut? 2. Upload Jawaban dari pertanyaan dibawah ini ke Link LKS 1. Relasi dari himpunan A ke himpunan B pada diagram panah di samping adalah . . . A. kurang dari B. setengah dari C. lebih dari D. faktor dari 2. Relasi “factor dari” dari himpunan P = {1, 2, 3} ke Q = {2, 4, 6} ditunjukkan oleh diagram panah.. 3. K = {3, 4, 5} dan L = {1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi “dua lebihnya dari” dari himpunan K ke L adalah …. A. {(3, 5), (4, 6)} B. {(3, 5), (4, 6), (5, 7)} C. {(3, 1), (4, 2), (5, 3)} D. {(3, 2), (4, 2), (5, 2)} 4. Himpunan pasangan berurutan dari grafik catesius di bawah adalah … A. {(2, 1), (3, 5), (4, 4), (6, 4)} B. {(1, 2), (2, 4), (4, 6), (5, 3)} C. {(1, 2), (2, 4), (4, 4), (4, 6), (5, 3)} D. {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)} 5. Range dari himpunan pasangan berurutan {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)} adalah...
Komentar
Posting Komentar