Langsung ke konten utama

KELAS 9 MATERI BULANGAN BERPANGKAT

Bilangan Berpangkat

Bilangan berpangkat adalah bilangan yang berfungsi untuk menyederhanakan  penulisan dan penyebutan suatu bilangan yang memiliki faktor-faktor perkalian yang sama. Contoh: 3x3x3x3x3=… atau 7x7x7x7x=…

Perkalian bilangan-bilangan dengan faktor-faktor yang sama seperti ini biasa disebut sebagai perkalian berulang. Bayangkan jika yang dikalikan angkanya sangat banyak, maka kita pun juga akan sangat ribet dalam menulisnya karena sangking banyaknya untuk satu kali bilangan perkalian tersebut. Setiap perkalian berulang dapat dituliskan secara ringkas dengan menggunakan notasi angka bilangan berpangkat.  Contoh:

3x3x3x3x3 ini dapat kita ringkas menggunakan bilangan berpangkat menjadi 35

8x8x8x8x8x8x8x8x8x8 dapat diringkas dengan bilangan berpangkat menjadi 810

Cara membacanya: 35    : Sepuluh pangkat 5

Rumus bilangan berpangkat adalah  

an=a×a×a×a…sebanyak n kali“.

Jenis – Jenis Bilangan Berpangkat

Ada beberapa jenis bilangan berpangkat yang paling sering dibahas, yaitu: bilangan berpangkat positif (+), bilangan berpangkat negatif (-) dan bilangan berpangkat nol (0).

  1. Bilangan Berpangkat Positif

Bilangan berpangkat positif adalah bilangan yang memiliki pangkat atau eksponen positif. Apa itu eksponen? eksponen ialah penyebutan lain dari pangkat. Bilangan berpangkat positif memiliki sifat-sifat tertentu, yang mana bilangan tersebut terdiri dari a, b, sebagai bilangan real dan m, n, yang merupakan bilangan bulat positif. Ada beberapa sifat-sifat bilangan berpangkat positif yaitu sebagai berikut:

  1. am x a= am+n
  2. a: a= am-n , untuk m>n dan b ≠ 0
  3. (am)= amn
  4. (ab)= abm
  5. (a/b)= am/b, untuk b ≠ 0

Soal
Silahkan selesaikan soal dibawah ini dan dikirimkan ke link dibawah ini!!









Komentar

Posting Komentar

Postingan populer dari blog ini

KELAS VIII : KOORDINAT

  Tujuan : Memahami posisi titik terhadap sumbu x dan sumbu y memahami posisi titik terhadap sumbu x dan sumbu y      Sumbu x, adalah garis bilangan yang posisinya mendatar / horisontal, dan merupakan garis yang diwakili oleh bilangan pertama ( x , y ) B. Sumbu y, adalah garis bilangan yang posisinya tegak / vertikal, dan merupakan garis yang diwakili oleh bilangan kedua ( x , y ): 3. Untuk bisa menentukan letak titik koordinat, maka kedua garis bilangan (sumbu x dan sumbu y itu harus dipertemukan dengan pusat bertemu pada titik nol, menjadi seperti ini : misalnya diketahui sebuah posisi terletak pada titik koordinat ( 3, 4 ), ini mengandung maksud bahwa : - pada sumbu x letakkan titik pada bilangan 3, seperti ini, - pada sumbu y letakkan titik pada bilangan 4, seperti ini, dan bila dijadikan letak titik koor...

KELAS VIII : ULANGAN HARIAN RELASI DAN FUNGSI

  Petunjuk Kegiatan 1. Jawablah Pertanyan berikut?  2. Upload Jawaban dari pertanyaan dibawah ini ke Link  LKS 1. Relasi dari himpunan A ke himpunan B  pada diagram panah di samping adalah . . . A. kurang dari B. setengah dari C. lebih dari D. faktor dari    2. Relasi “factor dari” dari himpunan P = {1, 2, 3} ke  Q = {2, 4, 6} ditunjukkan oleh diagram panah.. 3. K = {3, 4, 5} dan L = {1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi  “dua lebihnya dari” dari himpunan K ke L adalah …. A. {(3, 5), (4, 6)}  B. {(3, 5), (4, 6), (5, 7)} C. {(3, 1), (4, 2), (5, 3)} D. {(3, 2), (4, 2), (5, 2)} 4. Himpunan pasangan berurutan dari grafik catesius di bawah adalah …   A. {(2, 1), (3, 5), (4, 4), (6, 4)} B. {(1, 2), (2, 4), (4, 6), (5, 3)} C. {(1, 2), (2, 4), (4, 4), (4, 6), (5, 3)} D. {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)} 5. Range dari himpunan pasangan berurutan {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)}  adalah...