Langsung ke konten utama

KELAS VIII : MATERI LINGKARAN (Luas Lingkaran)

 

Luas Lingkaran

Luas lingkaran adalah ukuran seberapa besar daerah yang berada di dalam sebuah lingkaran. Untuk menghitung sebuah lingkaran diperlukan konstanta π “phi”. Definisi dari phi sendiri adalah sebuah konstanta dari perbandingan keliling lingkaran K dengan diameter d yang bernilai 22/7 atau biasa dibulatkan menjadi 3,14.

π = K / d

Rumus luas lingkaran ditentukan oleh jari-jari yang dimiliki sebuah lingkaran dimana rumusnya adalah

L = π x r2

Keterangan :
K = keliling lingkaran
d = diameter
r = jari-jari
π= phi (22/7 atau 3,14) 

Contoh soal menggunakan rumus luas lingkaran

Contoh Soal 1

Diketahui sebuah lingkaran memiliki diameter 28 cm. Berapakah luas lingkaran tersebut?

d = 28 cm
r = d/2 = 14 cm

Luas lingkaran

L = π x r2 = 22/7 x 142 = 616 cm2

 Petunjuk!

1. Baca materi secara tepat

2.  Liat liteatur yang ada

3. Buat soal dan jawabanya sebanyak 2 soal

4. kumpul di WA secara japri


 

Komentar

Postingan populer dari blog ini

KELAS VIII : ULANGAN HARIAN RELASI DAN FUNGSI

  Petunjuk Kegiatan 1. Jawablah Pertanyan berikut?  2. Upload Jawaban dari pertanyaan dibawah ini ke Link  LKS 1. Relasi dari himpunan A ke himpunan B  pada diagram panah di samping adalah . . . A. kurang dari B. setengah dari C. lebih dari D. faktor dari    2. Relasi “factor dari” dari himpunan P = {1, 2, 3} ke  Q = {2, 4, 6} ditunjukkan oleh diagram panah.. 3. K = {3, 4, 5} dan L = {1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi  “dua lebihnya dari” dari himpunan K ke L adalah …. A. {(3, 5), (4, 6)}  B. {(3, 5), (4, 6), (5, 7)} C. {(3, 1), (4, 2), (5, 3)} D. {(3, 2), (4, 2), (5, 2)} 4. Himpunan pasangan berurutan dari grafik catesius di bawah adalah …   A. {(2, 1), (3, 5), (4, 4), (6, 4)} B. {(1, 2), (2, 4), (4, 6), (5, 3)} C. {(1, 2), (2, 4), (4, 4), (4, 6), (5, 3)} D. {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)} 5. Range dari himpunan pasangan berurutan {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)}  adalah...

KELAS VIII : KOORDINAT

  Tujuan : Memahami posisi titik terhadap sumbu x dan sumbu y memahami posisi titik terhadap sumbu x dan sumbu y      Sumbu x, adalah garis bilangan yang posisinya mendatar / horisontal, dan merupakan garis yang diwakili oleh bilangan pertama ( x , y ) B. Sumbu y, adalah garis bilangan yang posisinya tegak / vertikal, dan merupakan garis yang diwakili oleh bilangan kedua ( x , y ): 3. Untuk bisa menentukan letak titik koordinat, maka kedua garis bilangan (sumbu x dan sumbu y itu harus dipertemukan dengan pusat bertemu pada titik nol, menjadi seperti ini : misalnya diketahui sebuah posisi terletak pada titik koordinat ( 3, 4 ), ini mengandung maksud bahwa : - pada sumbu x letakkan titik pada bilangan 3, seperti ini, - pada sumbu y letakkan titik pada bilangan 4, seperti ini, dan bila dijadikan letak titik koor...