Langsung ke konten utama

KELAS VIII : PERSAMAAN KUADRAT MATERI :Menentukan akar persamaan kuadrat dengan faktorisasai

 

Persamaan Kuadrat

Persamaan kuadrat adalah suatu persamaan dari variabel yang mempunyai pangkat tertinggi dua. Bentuk umumnya adalah: 

  ax^2 + bx + c = 0  Dengan a, b, merupakan koefisien, dan c adalah konstanta, serta  a \neq 0 .

Akar-akar Persamaan Kuadrat

Ada tiga metode dalam mencari akar-akar persamaan kuadrat ax^2 + bx + c = 0 yaitu:

Pemfaktoran

Metode ini mudah digunakan jika akar-akarnya merupakan bilangan rasional. Berikut ini tabel model persamaan kuadrat (PK) dan berbagai cara pemfaktorannya:

persamaan kuadrat dengan pemfaktoran 

contoh soal :

Suatu persamaan kuadrat  2x^2 - 6x + 3 = 0 memiliki akar-akar p dan q. Tentukan persamaan kuadrat baru dengan akar-akar (p + q) dan (2pq).

Pembahasan :

Berdasarkan persamaan 2x^2 - 6x + 3 = 0 diketahui bahwa :

p + q = -\frac{b}{a} = -\frac{(-6)}{2} = 3

p \cdot q = \frac{c}{a}= \frac{3}{2} = 1,5

Sehingga akar-akar dari persamaan kuadrat baru adalah :

x_1 = (p + q) = 3

x_2 = 2pq = 2(1,5) = 3

Persamaan kuadrat baru diperoleh :

(x - x_1)(x - x_2)

(x - 3)(x - 3) atau x^2 - 6x + 9 = 0

kegiatan :

1. Silahkan pahami materi dan contoh soal diatas 

2. Siswa yang kurang paham silahkan koment di blogger atau WA

 



 

Komentar

Posting Komentar

Postingan populer dari blog ini

KELAS VIII : KOORDINAT

  Tujuan : Memahami posisi titik terhadap sumbu x dan sumbu y memahami posisi titik terhadap sumbu x dan sumbu y      Sumbu x, adalah garis bilangan yang posisinya mendatar / horisontal, dan merupakan garis yang diwakili oleh bilangan pertama ( x , y ) B. Sumbu y, adalah garis bilangan yang posisinya tegak / vertikal, dan merupakan garis yang diwakili oleh bilangan kedua ( x , y ): 3. Untuk bisa menentukan letak titik koordinat, maka kedua garis bilangan (sumbu x dan sumbu y itu harus dipertemukan dengan pusat bertemu pada titik nol, menjadi seperti ini : misalnya diketahui sebuah posisi terletak pada titik koordinat ( 3, 4 ), ini mengandung maksud bahwa : - pada sumbu x letakkan titik pada bilangan 3, seperti ini, - pada sumbu y letakkan titik pada bilangan 4, seperti ini, dan bila dijadikan letak titik koordinat x.y = (3 , 4 ), dengan cara

KELAS VIII : ULANGAN HARIAN RELASI DAN FUNGSI

  Petunjuk Kegiatan 1. Jawablah Pertanyan berikut?  2. Upload Jawaban dari pertanyaan dibawah ini ke Link  LKS 1. Relasi dari himpunan A ke himpunan B  pada diagram panah di samping adalah . . . A. kurang dari B. setengah dari C. lebih dari D. faktor dari    2. Relasi “factor dari” dari himpunan P = {1, 2, 3} ke  Q = {2, 4, 6} ditunjukkan oleh diagram panah.. 3. K = {3, 4, 5} dan L = {1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi  “dua lebihnya dari” dari himpunan K ke L adalah …. A. {(3, 5), (4, 6)}  B. {(3, 5), (4, 6), (5, 7)} C. {(3, 1), (4, 2), (5, 3)} D. {(3, 2), (4, 2), (5, 2)} 4. Himpunan pasangan berurutan dari grafik catesius di bawah adalah …   A. {(2, 1), (3, 5), (4, 4), (6, 4)} B. {(1, 2), (2, 4), (4, 6), (5, 3)} C. {(1, 2), (2, 4), (4, 4), (4, 6), (5, 3)} D. {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)} 5. Range dari himpunan pasangan berurutan {(2, 1), (3, 5), (4, 2), (4, 4), (6, 4)}  adalah   A. {1, 2, 4, 5} B. {1, 2, 3, 4, 5} C. {1, 2, 3, 4, 5, 6

KELAS VIII : SPLDV (METODE GRAFIK)

  Pengertian Persamaan Linear Dua Variabel Bentuk Umum SPLDV ax + b = c (Persamaan linear 1 variabel dengan variabelnya x) px + qy = r (persamaan linear 2 variabel dengan variabelnya x dan y) Keterangan: X dan y termasuk variabel pangkat satu. Lalu a, p, dengan q ialah koefisien. Sementara untuk b, c dan r merupakan konstanta.   Contoh Soal dan Penyelesainnya 1. Adi ingin melakukan lompat tali. Sementara tali yang dipakainya memiliki panjang 70cm lebih pendek dari tinggi badan adi. Supaya talinya tak tersangkut, adi perlu tali dengan panjang 2 kali panjang tali yang sebelumnya. Sehingga jika di ukur panjang talinya menjadi 30cm lebih panjang dibanding tinggi badan adi. Nah, tentukan berapa tinggi badan adi dan panjang tali yang dipakai untuk bermain lompat tali. Berapa panjang tali supaya talinya tak tersangkut bila di pakai lompat tali adi? Jawab: a. Langkah awal yang perlu dilakukan dalam menyelesaikan soal tersebut ialah dengan mengganti seluruh besaran yang terdapa